| Name: | 数据挖掘 |
| No.: | S081104ZJ018 | Semester: | 秋季学期 |
| Hour: | 40 | Credit: | 2.0 |
| Teacher: | 刘莹 |
| Introduction: |
| 本课程为计算机专业研究生课程,主要介绍数据挖掘技术的起源、原理、主要算法。课程包含的主要议题包括:数据挖掘的重要性、特点、应用领域、数据仓库、关联规则、分类、预测、聚类等。本课程采用全英文教学,并将注重理论与实践相结合,使计算机专业研究生掌握数据挖掘的概念的同时,学会在工作中应用之,进而在科研中更好地利用和改进相关模型。 |
| Content: |
| Chapter 1: Introduction Motivation, major issues, major applications, characteristics Chapter 2: Data warehouse Model, architecture, operations Chapter 3: Data pre-processing Data cleaning, data transformation, data reduction Chapter 4: Association Rules Apriori, single-pass frequent itemset mining, FP-Growth Chapter 5: Classification Decision tree, Bayesian Classifier, Classification by backpropagation, KNN classifier, statistical prediction models Chapter 6: Clustering Partitioning methods, hierarchical methods, density-based methods, grid-based methods
|
| Material: |
|
|
| References: |
|
|